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Abstract 

We develop a dynamic model of collusion in airport-pair routes for selected US airlines and specify 
the first order conditions using a state-space representation that is estimated by Kalman-filtering 
techniques using the Databank 1A (DB1A) Department of Transportation (DOT) data during the 
period 1979I-1988IV. We consider two airlines, American (AA) and United (UA) and four city-
pairs. Our measure of market power is based on the shadow value of long-run profits in a two-
person strategic dynamic game and we find evidence of relative market power of AA in three of the 
four city pairs we analyze. 

1 Introduction 

In this paper, we develop a dynamic model of collusion in airport-pair routes for selected 
U.S. airlines. In earlier work on collusion and market power, Roeller and Sickles (2000) 
estimated a two-stage static structural model in which the firms play a repeated sequence 
of one-shot capacity and pricing games. They found that the market conduct parameter, 
whose value can differentiate among Bertrand, Cournot-Nash and monopolistic 
equilibrium, had adjusted to a value closer to a competitive equilibrium as the industry was 
deregulated. Using a somewhat different time series approach, Alam and Sickles (2000) 
looked at market conduct on the supply side (focusing on the degree of inefficiency) and 
found that a similar convergence to competitive equilibrium took place in the U.S. airline 
industry after its deregulation in 1976. Captain and Sickles (1997) utilized a one-stage 
static structural model of market conduct for the European airlines in which labor choices 
were endogenous and where firms play a pricing game and estimated conduct to be 
between a competitive and Betrand solution. Unfortunately, these studies relying on the 
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conjectural variations approach are myopic to the past and are not forward-looking when 
current actions are considered.     

The models we specify and estimate in this paper are based on the realistic assumption 
that firms consider the future when they make a current decision and that decisions they 
make today will influence outcomes in the future.  In this sense, it is similar in spirit to the 
work of Captain et al (2007) although they did not estimate but rather calibrated their 
model. In this paper, we consider models that also allows for more flexibility in describing 
how equilibrium outcomes can be characterized. Solutions are not necessarily at the nodes 
of the solutions identified by the static market conduct approaches. As pointed out in 
Perloff et al (2007), dynamic strategic considerations also often require new methods of 
estimation, such as the state-space methods which we employ herein, instead of the 
standard nonlinear least squares. Specifically, our paper develops a dynamic model of 
collusion in airport-pair routes for selected US airlines and specifies the first order 
conditions based on a state-space representation that is estimated by Kalman-filtering 
techniques (1960). Our model controls for economy-wide exogenous variables and city-
pair specific variables. We examine two U.S. commercial airline firms, United and 
American Airlines between 1979 Q1 and 1988 Q4.  

After the Airline deregulation Act of 1978, the airline industry moved from service-
based to price-based competition. Carriers were able to set their own fares, select and drop 
routes, and control flight frequency. U.S. airlines continue to face substantial upheavals in 
the form of mergers, failures, bankruptcy filings, reorganizations and operating losses. As 
the concentration of the industry continues to increase and as the number of profitable 
incumbents continues to dwindle, as fuel prices continue to soar, the survivability and 
prosperity of incumbents becomes increasingly problematic. In this economic and 
institutional setting, the dynamics of strategic decision making involving various forms of 
collusion in the form of formal alliances are important to understand. Another empirically 
attractive feature of this industry, a consequence of the strict filing requirements imposed 
by the federal government, is the wealth of accessible data not generally available in most 
other industries.  

The paper is structured as follows. The motivation for analyzing market power in a 
dynamic setting in the airline industry is provided in section 2. Section 3 introduces our 
econometric model and derives important measures of market power in a dynamic strategic 
setting, the shadow price of profits. Section 4 discusses our empirical illustration and 
results. Section 5 provides concluding remarks.  

2 Market power and the dynamics of firm interaction  

2.1 Rationale for collusion and market power 
Standard economic theory predicts that under mild assumptions when there are only a few 
agents on one side of a market those agents will often possess market power – the ability to 
alter profitably prices away from competitive levels without losing all customers to 
competitors. The Cournot model of duopoly assumes that a firm never had to consider the 
reaction of its competitor to its price or quantity choice. In the Bertrand model, a firm 
could undercut its rival’s price at the margin and compete-away all of the rival’s 
customers. In practice, however, a firm may recognize that if it undercut its rival, the rival 
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will respond by cutting its own price, ultimately leading to a short-run gain in sales but a 
long-run reduction in the price level.  

Consider a dynamic model in which these concerns arise. Each firm i  attempts to 
maximize the discounted value of profits, , where it

t
t πβ 1

1
−∞

=Σ itπ  is firm i’s profit in period 

. If each firm initially charges , the monopoly price, then industry profit is maximized. 

It continues to charge  in period t  if in every period preceding t , both firms have 

charged 

t mp
mp

pm ; otherwise it sets its price at marginal cost c  forever. This is equilibrium if the 
discount factor is sufficient high. In charging pm , the firm earns half the monopoly profit 
in each period. By deviating from this price, a firm can earn maximum profit, , during 
the period of deviation but it receives zero forever. Therefore, if 

mΠ
mm Π≥+ ...)+Π 1(2 + 2ββ , 

if 2
1≥β , then these strategies are equilibrium ones, which are also called trigger strategies. 

There are many other equilibria in this game, any price between the competitive price and 
the monopoly price can be sustained as an equilibrium price as long as the discount factor 

is greater than 
1
2 . The Folk Theorem summarizes this outcome: in an infinite repeated 

game, any feasible discounted payoffs that give each player, on a per-period basis, more 
than the lowest payoff that he could guarantee himself in a single play of the simultaneous-
move component game can be sustained as the payoffs of an subgame perfect Nash 
equilibrium if players discount the future to a sufficiently small degree. 

2.2 Rationale for dynamic decision making  
Beginning with the classic work of Chamberlin (1929), researchers have continued to 
explore the implications of repeated interaction between collusive oligopolists, as well as 
factors that may hinder such collusion in repeated pricing games.  Consider a small number 
of identical firms producing a homogeneous product. Chamberlin conjectured that the 
firms in the industry would charge the monopoly price. Each firm makes profit , 
where . As Chamberlin noted, detection lags and asymmetries between firms 
are two factors that may hinder collusion. Tacit collusion is enforced by the threat of 
retaliation. But retaliation can occur only when it is learnt that some member of the 
industry has deviated. For example, before the existence of online travel companies, the 
prices charged by airlines may be somewhat hidden. However, in the current environment, 
and to some degree in the environment that existed during our sample period, the prices 
charged by an airline can be observed fairly quickly by its competitors.  

nm /Π
)( mm pΠ≡Π

Oligopolists are likely to recognize that one threat to collusion is lack of secrecy and 
consequently may take steps to control it. An example is Orbitz, which is an online travel 
company funded by five airlines, American, Continental, Delta, Northwest and United. 
Under asymmetric conditions, the oligopolists’ marginal costs may differ, thus they have 
different monopoly prices. Low-cost firms would prefer to coordinate on a lower price 
than the higher-cost firms. Theory suggests that as an industry becomes more competitive, 
it becomes more important for a firm to perform efficiently relative to other firms if it is 
going to survive. This is one of the sources of dynamic productive efficiency revealed in 
the U.S. airline industry after deregulation by Alam and Sickles (2000). But, how does 
market power for airlines arise? Do they arise from barriers to entry, from sunk costs of 

 357



Review of Network Economics                                                                                           Vol.6, Issue 3 – September 2007 
 

gate and slot access, scale and network economies, or from hub-and-spoke systems which 
can give carriers market power even on relatively competitive routes? Borenstein (1989), 
among others, has estimated the importance of route and airport dominance in determining 
the degree of market power exercised by an airline. His results indicate that an airline’s 
share of passengers on a route and at the endpoint airports significantly influence its ability 
to mark up price above cost. The high markups of a dominant airline, however, do not 
create much of an “umbrella” effect from which carriers with smaller operations in the 
same markets can benefit. Other rationale for market power on routes come from Berry 
(1992) who pointed out that airline firms are suited to serve different routes by virtue of 
unobserved heterogeneities (market niches) that allow them to exploit monopoly power 
over their differentiated product.  An alternative view is found in the work of Morrison and 
Winston (2000) who examine merger activity and the factors that influence them for the 
U.S. airlines. They make the empirical argument that mergers are not driven by a desire to 
obtain market power but rather by the acquiring carriers’ desire to expand their 
international routes. These routes tend to be more profitable on average than domestic 
routes because of bilateral agreements that limit entry. Moreover, the acquired carriers 
often have strong incentives to merge because of poor financial prospects (Crandall and 
Winston, 2006). There is a substantial body of literature that has examined the reasons for 
and against the presence of market power in the commercial airline industry. What we 
consider below is an econometric model that can provide evidence for or against such 
market power in a dynamic setting of strategically interacting carriers at a level of 
disaggregation that provides us the best empirical measures of such potential conduct, 
which is the city pair route.  

3 Specification of the dynamic Model  

We look at a set of city pairs in which American and United are dominant firms and 
assume that the competitive environment in which the firms compete is Markovian. The 
source of data was the Databank 1A (DB1A) of the Department of Transportation (DOT). 
The data are taken directly from airline ticket stubs, along with the total ticket price; the 
data contains such information as the carrier, origin, destination and class for all trip 
segments. The data are by airline and by quarter from 1979 Q1 to 1988 Q4. The airlines in 
the study are American and United. Economy-wide exogenous variables and city pair 
specific variables are important controls in the model and consist of; the existence of a 
frequent flier program, strikes, alliances, the Gulf War, the air controller’s strike under the 
Reagan Administration, mergers, price of jet fuel and national taxes on airlines. The city-
pair specific exogenous variables consist of city pair and region dummies, international 
airport dummies, delays, entry and exit, share of minor carriers on the route, 
unemployment rate for each city, percent change in state GDP and relative or actual 
marginal cost. These variables have been examined in a somewhat different reduced form 
market power setting in Perloff, et al (2003) and in the context of constructing a hedonic 
airline price index (Good, et al, 2007).  

Turning to the model, AA (Firm1)’s dynamic program is 
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on choosing output q . While for UA (Firm2), its dynamic program is c,t
1
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on choosing output , where 
2
, tcq β  is the discount factor, the c  subscript refers to an airport 

pair, the  subscript is the time period, t x t  are economy-wide exogenous variables, and  
are city-pair specific exogenous variables. The parameter 

tcz ,

β  is at 0.90 in our analysis 
below.  

There are a variety of ways that we can allow the exogenous variables to influence the 

shadow value of q . We outline three different methods. First, we can write the first-
order condition for AA (Firm1) as 
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and the first-order condition for UA (Firm2) as 
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where Dc  is a dummy for the particular city pair c  . The above two equations are the 
measurement equations which will be used in the Kalman filters (see the Appendix for a 
more complete discussion of how the Kalman filter is set up for this problem). The shadow 

value of qc,t
1

 (see the Appendix for a detailed discussion of how the shadow price is 
constructed for our dynamic program) is 
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and provides us a similar measure of market power for UA.  

The Kalman filter for AA (Firm1) is 
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while for UA (Firm2) the Kalman filter is 
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The state equations are not defined. One possibility is a simple auto-regression for both 

carriers such as 
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while another possibility is to include the strictly exogenous variables. 
Second, we can use the same approach as above, but assume that the coefficients on the 

x  and z  terms are constants (no  subscripts):  and . Now we only have 
to determine two terms using Kalman filters. Third, we can reduce the number of 

3λ 4λ
λ  terms. 

For AA (Firm1) we can write 

t
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and for UA (Firm2) we can write 
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We now have three λ  terms that we need to determine using Kalman filters. We could 

allow  to be determined by a Kalman filter that depends on ij
tλ x  and not on z . The state 

equations are then 
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Providing that f  is linear in z  and providing that we know β , the first order condition 
is linear in parameters and can be estimated using the linear Kalman Filter. 

4 Estimation results  

The estimation results reported below are based on the first method discussed above. The 
state equation is defined as a simple auto-regression. Since we estimate the model by each 
city pair, Dc  is dropped. We include Dc  when we compare AA with UA by multiple city 
pairs. 

We illustrate in detail how we derive the estimated results of AA between city-pair 
Chicago (ORD) and San Diego (SAN). Estimates for other city-pairs are straightforward 
extensions. The first-order condition for AA (Firm 1) between city pair Chicago (ORD) 
and San Diego (SAN) is: 
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We assume a simple demand function given by  
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where A  is a constant. 

We use estimates of the average cost when route is defined by city pair (avcstcty), 
average price when the route is a city pair (avgprcty), and the number of passengers on a 
route (rtpass) from Perloff et al (2003). Our results are based on an assumed discount 
factor β  of , but a value of 0.95 was also examined and the results were qualitatively 
similar. This yields the following equation   
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We use national per capita income (pcinc) as an economy-wide exogenous variable Xt  

and Herfindahl index for city pair (herfcty) as an city-pair specific exogenous variable Zt  
which appears to be the best city-pair specific exogenous variable we could find in the 
available data. In this context then  
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Estimation results are reported in Tables 1 and 2. The cities are Chicago (ORD), Salt 

Lake City (SLC), San Diego (SAN), San Francisco (SFO) and Seattle (SEA).  Numerical 
issues with our algorithm prevented us from estimating accurately the standard errors for 
several of the variables. Those entries are left blank in the Tables. 
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Table 1: AA 

City Pair ORD-SAN ORD-SEA ORD-SFO ORD-SLC 
11λ  Estimates 0.64976652 0.34198363 0.35672006 0.00000596 
11λ  SE 0.09058998 0.08449455 0.09268303 0.23502357 
12λ  Estimates 0.00000552 0.16309741 0.16265314 0.44189663 

12λ  SE ** 0.09752401 0.11300235 0.13558679 
13λ  Estimates 0.13236929 0.15559350 0.14523205 0.24318685 
13λ  SE 0.08278507 0.07760735 0.07974509 0.19779975 
14λ  Estimates 0.00001244 0.00000927 0.00000201 0.00000029 
14λ  SE 0.05990846 0.04294906 0.04234850 0.07371905 

City Pair ORD-SAN ORD-SEA ORD-SFO ORD-SLC 
21λ  Estimates 0.69631873 0.00034146 0.00017537 0.00000281 
21λ  SE 0.10723028 0.35834513 ** ** 
22λ  Estimates 0.00001757 0.30445244 0.29264571 0.45626616 
22λ  SE 0.19210776 0.11489267 0.09255699 0.12926968 
23λ  Estimates 0.18620294 0.35685817 0.38122657 0.33791960 
23λ  SE 0.11633113 0.10459605 0.08599149 0.04786982 
24λ  Estimates 0.00000065 0.00000525 0.00000102 0.00001359 
24λ  SE 0.1357732 0.24650047 0.032894 ** 

Table 2: UA 

Comparing  with  in Tables 1 and 2, AA appears to be more significantly 
influenced by the economy-wide exogenous variables than UA since . Neither AA 
nor UA is significantly influenced by the city-pair specific variances. 

13λ 23λ
2313 λλ >
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2  and 
indicates the market power of UA. Based on results from Table 1 and Table 2, we can 
calculate the market power of AA and UA, at sample mean values of the variables. These 
estimates are in Table 3. 

 
City Pair ORD-SAN ORD-SEA ORD-SFO ORD-SLC 
AA 48155.47814 42739.03961 44788.23266 44267.45226 
UA 69711.50634 25440.61308 30158.55228 33775.10931 

Table 3 

Translating these estimates into market power shares of AA and UA in four city pairs 
is provided in Table 4. 

From Table 4 AA has a relatively larger market power share in ORD-SEA,ORD-SFO 
and ORD-SLC compared with UA, especially in ORD-SEA, while AA’s market share is 
63%. In city-pair ORD-SAN, UA has a relatively larger market share which is 59%. We 
know that when there are only a few agents on one side of a market, for these agents will 
possess market power and the bigger the market power share, the higher profit it will have, 
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holding other factors constant. One would expect, therefore, that UA would be more 
profitable in the ORD-SAN market while AA would be more profitable in the other three 
city pairs. 

 
City Pair ORD-SAN ORD-SEA ORD-SFO ORD-SLC 
AA 41% 63% 60% 57% 
UA 59% 37% 40% 43% 

Table 4: Market power share of AA and UA in city pairs 

5 Summary and Conclusion 

Our paper has developed a dynamic model of collusion in airport-pair routes airlines and 
compares the market power between the city-pairs Chicago and San Diego, Chicago and 
Seattle, Chicago and San Francisco and Chicago and Salt Lake City for United Airlines 
and American Airlines. We have used a state-space representation that is estimated by 
Kalman-filtering techniques to specify the first order conditions. The data we use are 
Databank 1A (DB1A) Department of Transportation (DOT) data. In our model, we discuss 
the economy-wide exogenous variables and city-pair specific variables. 

In our study, we only look at all the city pairs in which American and United are 
dominant firms. In future work, we can extend the study to examine richer empirical 
settings in which, among other things, the city-pair routes are not dominated by two firms 
and in which exit-entry is impacted by firm conduct and market conditions. Our general 
framework also appears to be an appropriate and feasible vehicle for examining market 
conduct in other industries where merger and acquisition activities may be subject to 
federal antitrust authorities such as the Federal Trade Commission or administrative 
oversight such as the US Department of Justice.   

6 References 

Alam, I. Semenick, and R. C. Sickles (2000) “Time Series Analysis of Deregulatory 
Dynamics and Technical Efficiency: the Case of the U. S. Airline Industry,” International 
Economic Review, 41: 203-218. 

Berry, Steven. (1992) “Estimation of a Model of Entry in the Airline Industry,” 
Econometrica, 60: 889-917. 

Borenstein, S. (1989) “Hubs and High Fares: Dominance and Market Power in the U.S. 
Airline Industry,” Rand Journal of Economics, 20: 344-365. 

Chamberlin, E. (1929) “Duopoly: Value Where Sellers Are Few,” Quarterly Journal of 
Economics, 43: 63-100. 

Captain, P., and R. C. Sickles (1997) “Competition and Efficiency in the European Airline 
Industry: 1976-1990,” Managerial and Decision Economics, 18: 209-225. 

 364



Review of Network Economics                                                                                           Vol.6, Issue 3 – September 2007 
 

Captain, P., D H. Good, R. C. Sickles and A. Ayyar (2007) “What if the European Airline 
Industry had Deregulated in 1979?: A Counterfactual Dynamic Simulation,” forthcoming 
in D. Lee (ed.), Volume 2: The Economics of Airline Institutions, Operations and 
Marketing, Elsevier: North Holland. 

Crandall, R. W., and C. Winston (2006) “Unfriendly Skies,” The Wall Street Journal, 
December 18. 

Good, D., R. C. Sickles, and J. Weiher (2007) “A Hedonic Price Index for Airline Travel,” 
mimeo, Rice University. 

Kalman, R. E. (1960) “A New Approach to Linear Filtering and Prediction Problems. 
Transaction of the ASME,” Journal of Basic Engineering, 82: 35-45. 

Morrison, S., and C. Winston (2000) “The Remaining Role for Government Policy in the 
Deregulated Airline Industry,” in S. Peltzman and C. Winston (ed.), Deregulation of 
Network Industries: What’s Next? AEI-Brookings Joint Center for Regulatory Studies: 
Washington, D. C.  

Perloff, J. M., R. C. Sickles, and J. Weiher (2003) “An Analysis of Market Power in the U. 
S. Airline Industry,” in D. Slottje (ed.), Measuring Market Power, Elsevier: North-
Holland, 309-323. 

Perloff, J. M., L. S. Carp, and A. Golan (2007) Estimating Market Power and Strategies. 
Cambridge University Press:  Cambridge, forthcoming. 

7 Appendix 1: Kalman filter 

State space modeling is useful for the analysis of dynamic models that involve unobserved 
variables. The typical state model is given by Measurement Equation tttt uBxAwy ++=  

and Transition Equation ttt vTww += −1  where x t  is a vector of exogenous and 

predetermined variables, wt  is a vector of possibly unobserved state variables. ut  and v t  
are uncorrelated, serially as well as crossly, with mean zero and variances R and Q, 
respectively. Also, the initial value w  is assumed to be uncorrelated with both u0 t  and v t . 
We often assume that ( )tv,tu  is jointly normal. The Kalman Filter (1960) defines a 
convenient recursive procedure to compute the conditional mean and variance of the state 
vector wt  under normality. To introduce the filter, we first define ( )( )t

sst yF 1== σ  and 

assume that x t  is adapted to . Assume normality, and introduce 1−tF
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The Kalman filter can be effectively introduced in two steps: prediction and updating, 
as we will show below. 

First, we write  to see that 
 for all . Therefore, under normality,  are independent of 

tttt
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. Now, simple conditioning of the 

measurement and transition equations on  yields 
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with conditional variances 
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as one can easily derive. 

Updating involves obtaining  and ttw | tt |Ω  using the values that we computed in the 
prediction step. Obviously, conditioning on  is equivalent to two-step sequential 

conditioning: first step conditioning on  , and the subsequent conditioning on 

tF

1−tF yt  given 
 . Such sequential conditioning can easily be done under normality. This is because we 

have under normality, 
1−tF
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Note that the measurement equation can be rewritten as 

 
ttttttt uwwAyy +−=− −− )( 1|1|  

 
from which we may easily see that the conditional covariance between wt  and yt  given 
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we can see 
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due to If 
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then ),(| 2·112·121 Σ∼ μNXX  , where 

 

21
1

2212112·11

22
1

221212·1 )(

ΣΣΣ−Σ=Σ

−ΣΣ+=
−

− μμμ X
 

 
which yield updating rules for wt  and tΩ . In particular, the rule for wt , , is a 

proportion of the forecast error of 

1|| −− tttt ww

yt  , 1| −− ttyty . The proportion is given by 
 

1
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−
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which is sometimes called the Kalman gain. The Kalman gain can thus be interpreted as 
the weight assigned to the information that is newly available at time t . 

We have assumed thus far that the parameter values are known. They are, however, 
unknown and have to be estimated in most practical applications. The parameters are 
usually estimated by the ML method. Let θ  be the vector of all the unknown parameters, 

and define ( )θtA  conditional log-likelihood function for yt  given , 1−tF ( ) ( )θθ s
t
stL A∑= =1  

log-likelihood function for  given . The ML estimator of tyy ",1 0F θ  can be obtained by 
maximizing ( )θtL  with respect to θ . 

It is generally not possible to obtain ( )θtA  explicitly as a function of θ , and we must 
compute it for each θ . Under normality, however, we have 
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with our notation, and therefore ( )θtA  can easily be calculated as 
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Note that  and  are functions of 1| −tty 1| −Σ tt θ , and that they are computed in the prediction 
step of the Kalman filter for each .θ   

We are often interested in the forecasts and their variances of wt  given all the 
observations of ( ) . To obtain n

tty 1= ( )ntnt FwEw || =  and ( )ntnt Fw |var| =Ω , we first observe 
that 
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It can be easily seen from 
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We may now easily deduce 

 368



Review of Network Economics                                                                                           Vol.6, Issue 3 – September 2007 
 

 
′′−

+++
−
+ ΩΩΩ−ΩΩ′Ω+Ω=Ω ttttttntttttttnt TT |

1
|1|1|1

1
|1||| )(  

 
which can be used to get  in a successive manner. nt |Ω

8 Appendix 2: Shadow price determination 

Shadow price calculation is an important by produce of the dynamic program and is useful 
in analyzing equilibrium strategies and market power. Let’s first look at a simplest 
optimization problem – two variables and one equality constraint: 

 
),(max yxf  
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Let f  and h  be  functions of two variables. For any fixed value of the parameter a , 

let  be the solution of the above problem with corresponding multiplier 
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for every a  . Therefore, using the Chain Rule, 
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and  measures the rate of change of the optimal value of )(a∗μ f  with respect to the 

parameter a . It is not hard to extend the above to the setting below. 
Let f ,  be C  function on  Let h1 , . . . , hm
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exogenous parameters.  Consider the problem of maximizing  subject to the 
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 371

 
We can specify the objective function  as the profit function of a firm and 

interpret the a ’s on the right-hand sides of the constraints as representing the amounts 
available for inputs in the firm’s production process. In this situation, 

)(xf

j
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j

xxf
a

 

 
represents the change in the optimal profit resulting from the availability of one more unit 
of input j and indicates how valuable another unit of input j would be to the firm’s profits. 
Alternatively, it tells the maximum amount the firm would be willing to pay to acquire 
another unit of input j. For this reason,  is called the shadow price of input j. )(a∗

jλ


	1 Introduction
	2 Market power and the dynamics of firm interaction 
	2.1 Rationale for collusion and market power
	2.2 Rationale for dynamic decision making 

	3 Specification of the dynamic Model 
	4 Estimation results 
	5 Summary and Conclusion
	6 References
	7 Appendix 1: Kalman filter
	8 Appendix 2: Shadow price determination

